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Stability in the presence of creep has been studied by different 

authors; some of these investigations were made as much as ten Years 

ago. 

The majority of the published papers are concerned with problems of 

the stability of longitudinally compressed rods, since this represents 

the simplest formulation of the problem by which many of the particular 

characteristics of stability can be elucidated. 

It has to be noted that there exists a series of principally diffe- 

rent formulations of the problems of stability in the presence of 

creep. In this paper. consideration will be restricted to stability of 

rectilinear forms of equilibrium. 

'Ihe first study of stability in the presence of creep is due to 

Rzhanitsyn [ll . 'Ihis paper considers the stability of a rod the material 
of which obeys a law of the form 

no’ -t 0 = 11~ -f- Em* (1) 

This equation describes limited creep, i.e. for constant loading the 
displacements approach a definite limit. It must be emphasized that the 

behavior of a rod for longitudinal bending will differ essentially de- 

pending on the way in which the creep of the material depends on the 

magnitudes of the accumulated deformation. In what follows, the limiting 

expression in this sense will be stated. For the case of steady creep, it 

has been shown [2 1 that for any eccentricity, however arbitrary and small, 
the rod moves with monotonically growing velocity amplitude; therefore, 

unsteady creep will be considered below. 

Now consider the stability of a rod whose material obeys the relation 

(1). Rzhanitsyn in his paper in 1946, as also in subsequent work, con- 

sidered straight rods, compressed by central forces, and, constructing 

the equilibrium equations for the disturbed state (without defining 
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sufficiently exactly the disturbance under consideration) he obtained the 

quasi-static equations of motion. Thus, as has been noted by the same 

author [ 3 ] , in this work the initial conditions were not fulfilled. 
Further, he obtained an expression for the critical load which was deter- 

mined by the Euler formula, where E was replaced by the modulus of elonga- 

tion H. lhis result does not give rise to any doubt, but the method of 
its deduction produces some consternation, since once definite hypotheses 

regarding the dependence for the material have been introduced, it is 

natural to expect in the end to obtain the correct solution of the problem. 

Iherefore, it will be interesting to proceed to the solution of the same 

problem with a somewhat different attitude. 

It is known that for the solution of problems of elastic stability of 

rods in a linear formulation there exist several methods among which the 

most popular ones are the following: the existence for given loads of two 

states of equilibrium- the stability of the rod in vibrations and the 

boundedness of deflections when the rod has initial curvature. In a given 

case of creep there applies the circumstance that for constant loading, 

in general, the state of deformation does not remain constant. 'Iherefore, 

the question regarding the possibility of the simultaneous existence of 

two states of equilibrium is determined by the instantaneous character- 

istics of the body, and, since in the majority of theories it is assumed 

that the instantaneous characteristics are purely elastic, then, besides 

the elastic loss of stability, nothing else in this direction can be ob- 

tained. In fact, it is for this reason that all attempts to solve the 

problem by exact methods have encountered such a contradiction as the im- 

possibility of satisfying the initial conditions. Consequently, such a 

method may not give the fundamental results completely. 

The second method of investigation, based on the stability of the 

vibrations, is used for the determination of the critical state; it has 

been used in a number of papers (for example, in [4 I). It must be noted 

that this method, generally speaking, requires an extension of the intro- 

duced hypotheses regarding the behavior of the material during the process 

of vibration. However, this may be avoided, particularly since for the 

velocities of creep inertia does not play an important role. 

Iherefore, consider the behavior of a hinged rod which is compressed 

by longitudinal forces and the material of which obeys the relation (11; 

it will be assumed that the rod has the initial deflections 

y == 0,)” sin y 
J 

Using (1) one may express (J in terms of the strain c; if the hypothesis 

of plane sections is introduced, and if one considers everything in the 
linear formulation, then u may be expressed in terms of the second deri- 

vative of the deflection. Substituting the obtained expression for u in 
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the equilibrium equation one finally obtains the equation for the ampli- 

tude of the deflection a for longitudinal bending: 

E (Pe - P) a -f (I’,H - PE) + = pe ; a,,(, (3) 

Here Pe is the Euler critical force, 

Therefore the solution of (31 has the form 

(I P,FI- PE t 
-= -- 
floe 

p _ p nE 

13 

4 
e 

for the condition PeH- PE f 0; obviously, for PE > PeH, the deflection 

becomes unbounded with time, while for PE < PeH it tends to the limit 

Fe 
a= p, -pPR Ha(l(J 

In the case PeH = PE, the solution of (3) has the form 

a 
-_= 
000 

P + -;$E!J t 
P,- P (6) 

which likewise leads to a + 00 for t -+ m. The deduction from the solution 

obtained coincides with that of Rzhanitsyn regarding the critical stress, 

but it is free from certain deficiencies. 

It must be underlined that in distinction from the studies in the 

elastic region for creep, it is possible to obtain critical values for 

short term excessive loading, since an essential role is played here 

by the time history and not the instantaneous characteristics. Of course, 

the short term loading may not exceed the elastic critical force. 

Consider next the arbitrary nonlinear hardening law of the type 

P = j(PS a) (7) 

where p is the plastic deformation. In [4 1 the problem of the stability 

of a compressed rod has been studied for a creep law of the form (71. In 

this paper, there were proposed quasistatic and dynamic approaches to the 
solution of the problem and it was shown that they give identical results 

for the determination of the stability of a state. Just as in the work of 

Rzhanitsyn, for the quasistatic method the initial conditions are not 
fulfilled. Here, successively pursuing the above procedure, it will be 

shown that the analogous results may be obtained without any internal 

contradictions in the deduction. In addition, the method of investigation 
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of longitudinal bending in the presence of initial deformation is free 

from the contradiction which occurs in the quasistatic study, that with 

time the initial deformation of the compressed bar may decrease, which 

does not correspond to logical reasoning nor to experimental results. 

Before proceeding to the study, one circumstance must be noted. For 

creep of the elements of a structure, for example in pure bending, a con- 

stant growth of the deflections with time is observed; therefore, the de- 

finition of stability of a structure as the boundedness of deflections 

for unlimited time is inadmissible for practical purposes. Hence another 

definition of the stability of a longitudinally compressed bar will be 

introduced. 

'Ihe state of a longitudinally compressed bar will be assumed to be 

stable if for constant load its initial deflection does not increase 

faster than a linear function of time; or, in other words, the rate of 
growth of the deflections with time does not increase and the state is 

assumed to be unstable if the deflections grow with increasing rate. 

A very particular definition of stability has been given here which is 

in need of a refinement and extension. 'Ihe process of longitudinal bend- 

ing of a rod in the case of creep can be broken up into two stages: the 

first when the increase of the deflections is bounded (this applies for 

bounded creep) or takes place with approximately constant rate, and the 

second when the increase of the deflections bears an avalanche-type 

character (the increase of the deflection growing with the rate of de- 

flection). 

'Ihis definition also has a definite meaning for the explanation of 

experimental results in which first there is observed a convergence of 

the cross-beams of the testing machine with constant velocity, and then 

a rapid growth in this velocity. 

In accordance with the introduced definition, one and the same rod 

for one and the same loading may find itself in a stable or in an unstable 

state depending on the accumulated plastic deformation. 

Consider a hinged bar, compressed by a longitudinal force P; let the 

initial deflection be given by (21. It will be assumed that the deflections 

are small and therefore for an increase of the stresses and deformations, 

characterizing the bending of the rod, one can take the variational rela- 

tion (7): 

Taking into consideration that 
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and letting y = a sin(n x/L), for a one obtains the equation 

VIZ-- P) a’ + (- hP, $- hP - BpP) a = - Pei4700 + $’ 

Introducing the non-dimensional deflection 

(9) 

(10) 

and assuming P* = 0, equation (9) becomes 

Equation (11) does not depend on the initial deflection aoO, the initial 

condition having the form: u(O) = 1. Hence, all qualitative deductions 

regarding the determination of stable and unstable states of the rod will 

not depend on the magnitude of the initial deflections of the rod. 

Equation (11) will now be studied. Let equation ('71 characterize hard- 

ening when X < 0, p > 0. For t = 0 one has u > 0, i.e. after the loading 
has been imposed the deflections grow. Now study the increase of the de- 

flection with time. Since p and h are the characteristic quantities of 

the basic deformed state of the rod, obtained by integration of (71 for 

u = const, they will themselves represent known functions of time. Ihus 

one obtains readily the solution of equation (11) which takes the form 

From (12) one may find the regions in which u does not grow and in 

which it grows, which in accordance with the introduced definition gives 

the regions of stability and instability. It is hardly possible to study 

this relation in its general form, but certain results may be obtained by 

consideration of equation (11). If it is assumed that the coefficients in 

this equation vary little and that they may be taken to be constant, then 

the solution of (11) may be written in the form 

‘A 
u= h+sp$ 

_+. Ce(-h-EPw) f (13) 

Let h + E/L/~< 0 andh< 0; since the deflections increase with in- 

creasing time t, then c < 0 and, consequently, u < 0; therefore u does not 

increase and one has a stable state. 
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IfX+ Ep@> 0 andX< 0, thenc> 0; in this case one has an un- 

stable state. 

The boundary between stability and'instability will be the condition 

X + Ep/3 = 0 which coincides exactly with the quasistatic criterion of 
stability. 

It is of interest here to consider the one case when the equality 

X + EpP = 0 is satisfied at. all times except at one instant; consequent.- 
ly, for any p, assuming in addition that f may be represented in the form 
f = g(p)+(0), one obtains 

(14) 
and, since o = const, one has g = e-yp 

-(Ir+Epz=O (15) 

‘Ihe second relation determines the critical value o* and it is readily 

shown that for o < o* the rod is always stable, while for o > o* it is 

always unstable. 'Ihe creep law of the form (15) describes unbounded creep, 

but here the creep deformation grows for constant. stress like log t. It 

is clear that here the conditions are the same as for the relation (1) 

and it may be said that this law represents the upper bound for relations, 

describing bounded and, as shown above, even unbounded creep, for which 

there exists a critical load which does not depend on the magnitude of 

the accumulated deformation. It should be stated that in the case of 

steady creep X = 0 and, therefore, an unstable state will always prevail. 

Equation (11) will now be studied with a view to changes in X and p 

for one particular creep law when the relation (7) has the form 

P’;= I (PI 0) =: c9 (PI (c, (3) 
In accordance with this equality 

dt = 9 

(16) 

(17) 

From (11) one obtains 

Here c e is the Euler critical deformation for the rod, p as a function 
of time is determined by relation (17). Integrating (X3!, taking into con- 

sideration the initial condition u = 1 for t = 0, and this means also for 

p = 0, one finds 
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u = IpEPl[e-Pld ($), 
0 

P1 = * (1% 

'Ihe condition of the critical state has the form 

In its general form, the integral (19) cannot be expressed in terms 

of elementary functions. A particular form of the law (16) will now be 

studied. Let 

Y(P) = P-” (21) 

Then (19) has the form 

(22) 

In this expression, when a is an integer, the integration is easily 
performed; as in the case a = 1, the equality (22) has the form 

Using (20), for the determination of the critical state one obtains 

the condition 

eP1 = 
1 

1 - Pl + l/s P12 
(24) 

In addition to the solution p1 = 0, there still exists the solution 

pi = 1.36 (25) 

By the approximate and quasistatic criteria one has the condition 

p1 = a (26) 

Condition (25), being more exact and justified, gives larger values of 

the critical time than the approximate theory, as, generally speaking, 

corresponds to experimental evidence. 

In the cases a = 2 and a = 3 one obtains by an analogous method 

p1 = 3.10 (a = 2), pI = 4.98 (a = 3) (27) 

It is obvious that for increasing a the difference between the exact 
and the approximate methods increases. 
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All the statements are correct when sufficiently smooth relations of 

the form (8) are under consideration, i.e. such relations that the ex- 

pression - h - /3pE changes its sign only once. Otherwise there may exist 

several zones of stability and instability. 

In conclusion, it must be said that usually the linear formulation 

gives upper values of the critical forces. In the present case one has 

as a lower estimate of the carrying capacity of the bar, i.e. at the 

attainment of the critical state the rod does not fail, but there will 

be observed only an accelerated increase of the deflections. 
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